BECE 1993 - MATHEMATICS [PAPER I]
{"en":"
OBJECTIVE TEST<\/b><\/h4>1.<\/span><\/p><\/div> Expand (2a<\/i> + b<\/i>) (a<\/i> + 2b<\/i>)<\/p>A. <\/span><\/div> 2a<\/i>2<\/sup> + 2b<\/i>2<\/sup><\/p><\/div><\/div><\/div>B. <\/span><\/div> 2a<\/i>2<\/sup> + b<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div><\/div>C. <\/span><\/div> 5a<\/i>2<\/sup> + 2a<\/i>2<\/sup><\/p><\/div><\/div><\/div>D. <\/span><\/div> 2a<\/i>2<\/sup> + 2a<\/i> + 4ab<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div><\/div>E. <\/span><\/div> 2a<\/i>2<\/sup> + 5ab<\/i> + 2b<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div><\/div><\/div><\/div><\/div><\/div>2.<\/span><\/p><\/div> Find the missing number in the following binary operation:<\/p>
<\/td> 1<\/td> 1<\/td> 0<\/td> 0<\/td> 1<\/td> 1<\/td> 0<\/td><\/tr> -<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td><\/tr> <\/td> <\/td> 1<\/td> 1<\/td> 1<\/td> 0<\/td> 1<\/td> 1<\/td><\/tr><\/tbody><\/table>A. <\/span><\/div> 111011<\/p><\/div><\/div><\/div>
B. <\/span><\/div> 101001<\/p><\/div><\/div><\/div><\/div>
<\/div>C. <\/span><\/div> 100011<\/p><\/div><\/div><\/div>
D. <\/span><\/div> 101110<\/p><\/div><\/div><\/div><\/div>
<\/div>E. <\/span><\/div> 101011<\/p><\/div><\/div><\/div><\/div>
<\/div><\/div><\/div><\/div><\/div>3.<\/span><\/p><\/div> If x<\/i> = {1, 3, 5, 7, 9, 11, 13, 15}, find the truth set of x<\/i> – 3 ≥ 10.<\/p>A. <\/span><\/div> {15}<\/p><\/div><\/div><\/div>
B. <\/span><\/div> {13,15}<\/p><\/div><\/div><\/div><\/div>
<\/div>C. <\/span><\/div> {11,13,15}<\/p><\/div><\/div><\/div>
D. <\/span><\/div> {9,11,13,15}<\/p><\/div><\/div><\/div><\/div>
<\/div>E. <\/span><\/div> {7,9,11,13,15}<\/p><\/div><\/div><\/div><\/div>
<\/div><\/div><\/div><\/div><\/div>4.<\/span><\/p><\/div> Which of these has the least number of lines of symmetry?<\/p>
A. <\/span><\/div> An equilateral triangle<\/p><\/div><\/div><\/div>
B. <\/span><\/div> A rectangle<\/p><\/div><\/div><\/div><\/div>
<\/div>C. <\/span><\/div> A square<\/p><\/div><\/div><\/div>
D. <\/span><\/div> A circle<\/p><\/div><\/div><\/div><\/div>
<\/div>E. <\/span><\/div> An isosceles triangle<\/p><\/div><\/div><\/div><\/div>
<\/div><\/div><\/div><\/div><\/div>5.<\/span><\/p><\/div> Find 21<\/span><\/span><\/span>2<\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/span><\/nobr><\/span>% of ₵2,000.00<\/p>A. <\/span><\/div> ₵40.00<\/p><\/div><\/div><\/div>
B. <\/span><\/div> ₵50.00<\/p><\/div><\/div><\/div><\/div>
<\/div>C. <\/span><\/div> ₵100.00<\/p><\/div><\/div><\/div>
D. <\/span><\/div> ₵800.00<\/p><\/div><\/div><\/div><\/div>
<\/div>E. <\/span><\/div> ₵5,000.00<\/p><\/div><\/div><\/div><\/div>
1.<\/span><\/p><\/div> Expand (2a<\/i> + b<\/i>) (a<\/i> + 2b<\/i>)<\/p> 2a<\/i>2<\/sup> + 2b<\/i>2<\/sup><\/p><\/div><\/div><\/div> 2a<\/i>2<\/sup> + b<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div> 5a<\/i>2<\/sup> + 2a<\/i>2<\/sup><\/p><\/div><\/div><\/div> 2a<\/i>2<\/sup> + 2a<\/i> + 4ab<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div> 2a<\/i>2<\/sup> + 5ab<\/i> + 2b<\/i>2<\/sup><\/p><\/div><\/div><\/div><\/div> 2.<\/span><\/p><\/div> Find the missing number in the following binary operation:<\/p> 111011<\/p><\/div><\/div><\/div> 101001<\/p><\/div><\/div><\/div><\/div> 100011<\/p><\/div><\/div><\/div> 101110<\/p><\/div><\/div><\/div><\/div> 101011<\/p><\/div><\/div><\/div><\/div> 3.<\/span><\/p><\/div> If x<\/i> = {1, 3, 5, 7, 9, 11, 13, 15}, find the truth set of x<\/i> – 3 ≥ 10.<\/p> {15}<\/p><\/div><\/div><\/div> {13,15}<\/p><\/div><\/div><\/div><\/div> {11,13,15}<\/p><\/div><\/div><\/div> {9,11,13,15}<\/p><\/div><\/div><\/div><\/div> {7,9,11,13,15}<\/p><\/div><\/div><\/div><\/div> 4.<\/span><\/p><\/div> Which of these has the least number of lines of symmetry?<\/p> An equilateral triangle<\/p><\/div><\/div><\/div> A rectangle<\/p><\/div><\/div><\/div><\/div> A square<\/p><\/div><\/div><\/div> A circle<\/p><\/div><\/div><\/div><\/div> An isosceles triangle<\/p><\/div><\/div><\/div><\/div> 5.<\/span><\/p><\/div> Find 2 ₵40.00<\/p><\/div><\/div><\/div> ₵50.00<\/p><\/div><\/div><\/div><\/div> ₵100.00<\/p><\/div><\/div><\/div> ₵800.00<\/p><\/div><\/div><\/div><\/div> ₵5,000.00<\/p><\/div><\/div><\/div><\/div><\/td> 1<\/td> 1<\/td> 0<\/td> 0<\/td> 1<\/td> 1<\/td> 0<\/td><\/tr> -<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td> *<\/td><\/tr> <\/td> <\/td> 1<\/td> 1<\/td> 1<\/td> 0<\/td> 1<\/td> 1<\/td><\/tr><\/tbody><\/table>